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a b s t r a c t

The actual breathing mechanism of the transverse breathing crack in the cracked rotor

system that appears due to the shaft weight is addressed here. As a result, the correct

time-varying area moments of inertia for the cracked element cross-section during shaft

rotation are also determined. Hence, two new breathing functions are identified to

breathing functions are used in formulating the time-varying finite element stiffness

matrix of the cracked element. The finite element equations of motion are then

formulated for the cracked rotor system and solved via harmonic balance method for

response, whirl orbits and the shift in the critical and subcritical speeds. The analytical

results of this approach are compared with some previously published results obtained

using approximate formulas for the breathing mechanism. The comparison shows that

the previously used breathing function is a weak model for the breathing mechanism in

the cracked rotor even for small crack depths. The new breathing functions give more

accurate results for the dynamic behavior of the cracked rotor system for a wide range

of the crack depths. The current approach is found to be efficient for crack detection

since the critical and subcritical shaft speeds, the unique vibration signature in the

neighborhood of the subcritical speeds and the sensitivity to the unbalance force

direction all together can be utilized to detect the breathing crack before further

damage occurs.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Rotordynamic systems have had many applications for many decades. Gas turbines and compressors are examples of
heavy rotating machines that are driven by rotating shafts which are intensively used in power generation field and
aircrafts. In addition, most of the heavy industries have a basic use of rotating machines. The extensive use of these
rotordynamic systems with continuous heavy loading may yield an unpredicted failure and damage that leads to a loss in
life and equipments. These damages almost always occur due to propagating fatigue cracks that lead to sudden and
destructive vibration scenarios. The breathing fatigue crack has a great deal of attention in literature as one of the main
causes of these dangerous damages in rotor systems. The breathing mechanism of the crack that appears in rotating
machinery is mainly due to the shaft weight. Several studies have focused on two models of fatigue cracks that are affected
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Nomenclature

A1 the left uncracked area at y=0
A2 area of the closed portion of the crack
Ac area of the crack segment at y=0 (fully open

crack)
Ace overall cracked element cross-sectional area
ce centroid of the cross-section
E elastic modulus
e centroid location of A1 in Y-axis
h crack depth in the radial direction
I area moment of inertia of a circular section
I1 area moment of inertia of the uncracked

segment (A1) about X-axis
I2 area moment of inertia of the uncracked

segment (A1) about Y-axis
IX area moment of inertia of the overall cross-

sectional area of the cracked element (Ace)
about X-axis

IY area moment of inertia of the overall cross-
sectional area of the cracked element (Ace)
about Y-axis

ÎX time-periodic approximate formula for the
exact IX

ÎY time-periodic approximate formula for the
exact IY

IA1

X area moment of inertia of the uncracked
segment (A1) about X-axis

IA1

Y area moment of inertia of the uncracked
segment (A1) about Y-axis

IA2

X area moment of inertia of the closed portion of
the crack (A2) about X-axis

IA2

Y area moment of inertia of the closed portion of
the crack (A2) about Y-axis

Ic
x area moment of inertia of the crack segment

(Ac) about X-axis
Ic
y area moment of inertia of the crack segment

(Ac) about Y-axis
L length of the shaft
l length of the element in the finite element

model
N.A. neutral axis
O origin of the fixed coordinate system
R shaft radius
X, Y fixed coordinate system
X,Y fixed centroidal axes of the cracked element

cross-section
x, y rotating-coordinate system
x,y rotating centroidal axes
Xce the centroid coordinates of the cracked ele-

ment cross-sectional area in X-axis
Xi the centroid coordinates in X-axis for the area

Ai for i=1, y, 4
Yce the centroid coordinates of the cracked ele-

ment cross-sectional area in Y-axis
Yi the centroid coordinates in Y-axis for the area

Ai for i=1, y, 4
m crack depth ratio
y angle of rotation
O rotational speed of the rotor
obi the ith critical backward whirl speed
ofi the ith critical forward whirl speed
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by the static deflection of the rotor, namely the switching and breathing crack models. Finding an efficient model of the
breathing crack in rotor systems may help in identifying a unique vibration signature of the cracked rotor that assists in the
early detection of the crack before damage occurs due to further crack propagation.

Different techniques have been used in the literature for modeling the transverse crack in rotating shafts. The flexibility
matrix method has been utilized for modeling the stiffness of the cracked rotor with breathing crack [1–6]. The coupling of
the longitudinal and bending vibration in a cracked shaft was studied for the system with an open transverse crack in Ref.
[1] and two transverse breathing cracks in Ref. [2] in which the breathing mechanism was found to depend on the direction
of the excitation load. It was found that there are variations in the critical frequencies as the crack depth increases for the
open crack case. The analytical and the experimental results have verified the effect of the coupling on both transverse
vibration directions for the breathing crack case. The finite element method (FEM) was used in modeling the equations of
motion of the cracked rotor in Refs. [3–6] where the flexibility matrix was also used in modeling the stiffness matrix of the
cracked element.

The finite element stiffness matrix of a rod in space found in Ref. [7] was used to represent the cracked element stiffness
matrix in Refs. [8–12] where the time-varying element stiffness matrix of the cracked element was considered. The
classical breathing function proposed in Ref. [13] was used to express the time change in the stiffness of the cracked
element during rotation. This results in a time-varying element stiffness matrix due to the breathing mechanism of the
crack. The finite element equations of motion were solved using the harmonic balance (HB) method. The shapes of the
orbits in the neighborhood of subcritical speeds and the emerged resonance peaks at these speeds can be used for crack
detection in rotor systems. In addition, the shift in the critical and subcritical speeds as a function of the crack size was
verified in Ref. [12] via waterfall plots.

The behavior of the cracked rotor in the neighborhood of the subcritical speeds was also studied in Refs. [14–22]. The
transfer matrix method was employed in studying the behavior of the cracked rotor system where the second harmonic
characteristics are used in detecting the crack in the system [14]. In addition, the transfer matrix method was utilized to
find the cracked rotor response of a simple rotor model in Ref. [15]. It was noticed that there is a temporary whirl reversal
and phase shift near to the critical and subcritical speeds due to instability in the neighborhood of these speeds.
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The nonlinear behavior of the cracked rotor was studied in Ref. [16] where new peaks of vibration have appeared at half
and one third of the critical speeds. A theoretical cracked beam model was used for detecting cracks in power plant
rotating machines [17]. The vibration amplitudes in the neighborhood of the first subcritical speed (1/2 first critical speed)
were used in detecting the crack while a good match was found between the numerical and experimental results. The
nonlinear dynamic behavior of the cracked Jeffcott rotor with switching and breathing crack models was also studied in
Ref. [18]. Chaos and bifurcation were observed only in the case of a switching crack. An experimental analysis of a cracked
rotor in the neighborhood of the subcritical speeds was performed in Ref. [19]. The effects of the crack depth and the
additional eccentricity were verified experimentally via the shapes of the orbits, response and waterfall plots for the
shaft with an open crack. The cracked rotor response during the passage through subcritical speeds was discussed in
Refs. [20,21] where the two loops orbit appears in the neighborhood of the 1/2 the critical speed. This behavior of the orbit
before and after the critical speed can be utilized as an indication of a propagating crack in the rotor system.

A review of the strain energy release rate approach (SERR) for different modeling techniques of open, switching and
breathing cracks and their corresponding methods of solution was introduced in Ref. [22]. Some of these modeling
techniques have already been overviewed in this introduction.

Most of the above techniques have considered some assumptions in modeling the breathing crack. Hence, the breathing
mechanism of the breathing crack was almost an approximation of the actual breathing of the crack. In this study, the
actual breathing mechanism is presented and new breathing functions of the breathing crack are introduced. The correct
time-varying stiffness matrix is formulated and incorporated to the global stiffness matrix in the finite element model of
the cracked rotor with breathing crack. The harmonic balance method is employed for finding the response, orbits and
critical and subcritical speeds of a cracked rotor system. The analytical results of this approach are compared with some
published results in which other techniques or forms for breathing mechanism were used. It is found that some of the
previous studies have used an approximate formula of the breathing function [8–13,23]. It is shown that the new breathing
functions introduced in this study are considerably more accurate than the previously used functions in the literature. It is
found that for small breathing crack depths, high vibration amplitudes with unique whirl orbits appear during the passage
through the subcritical speeds. These amplitudes of vibration that appear for these small crack depths were barely
observable when the old breathing function was used. The unique whirl orbits that appear for small breathing crack depths
in the neighborhoods of subcritical speeds can be used as an early indication of breathing crack propagation.

2. Actual breathing mechanism of the breathing crack model

An approach for calculating the accurate breathing mechanism of the crack in a cracked rotor was introduced in
Ref. [24]. In this approach a linear stress/strain distribution was assumed in the crack location to approximate the actual
breathing of the crack found via three-dimensional nonlinear finite element calculations. An excellent agreement has been
found between the simplified linear model and the nonlinear finite element model for finding the accurate breathing
mechanism of the crack. Even though highly accurate breathing calculations have been performed, no mathematical
formulas of the breathing mechanism were introduced. It is necessary to introduce breathing functions that closely
approximate the actual breathing mechanism of the crack where the time-varying stiffness matrix can be formulated and
incorporated to the linear time-periodic equations of motion of the cracked rotor system. The aim here in this paper is to
find these actual time-periodic breathing functions which can be used in formulating the time-varying stiffness matrix in
the finite element equations of motion of the cracked rotor. These equations of motion are solvable via the harmonic
balance method. The breathing mechanism occurs in the cracked rotor when the vibration is dominated by the static
deflection of the shaft and the transverse thickness of the crack in the axial direction is very small. If the shaft length and
diameter are large enough, the neutral axis almost passes through the centroid of the cracked element cross-sectional area.

In addition, the torsional and longitudinal vibrations are assumed to be dominated by the transverse bending vibration
in the proposed model of this study especially in large turbine–generator shafts where the longitudinal vibration is
restrained (minimized) by the effect of the use of many journal and thrust bearings. In such large machines, the weight of
the rotor overcomes the dynamic loads where the static deflections dominate the vibration. However, in the vertical shafts
the static deflection is dominated by the dynamic vibration amplitude which results in a nonlinear cracked rotor system
[22]. As the shaft starts to rotate, the locations of the centroid and the neutral axis of the cracked element are changed with
time during rotation as shown in Fig. 1. The tension stress field exists below the neutral axis which tends to keep the crack
open. The compression stress field that exists above the neutral axis tends to compress the crack to be closed as shown in
the figure.

The crack is modeled as shown in Fig. 2 where the dashed segment represents the crack segment. The edge of the crack
is assumed at zero angle with the fixed X-axis at t=0 as shown in Fig. 2a. As the shaft starts to rotate, the crack angle with
the negative Y-axis is changed by time to Ot as shown in Fig. 2b.

The cross-sectional area of the cracked element at t=0 and the centroid location e on the fixed Y-axis are given as

A1 ¼ R2ðp�cos�1ð1�mÞþð1�mÞgÞ (1a)

e¼
2R3

3A1
ðmð2�mÞÞ3=2

¼
2R3

3A1
g3 (1b)
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Fig. 2. Schematic diagrams of the cracked element cross-section: (a) before rotation and (b) after the shaft rotates. The dashed area represents the crack

segment.

Table 1
Crack states for full angle of rotation (2p).

Rotation angle 0rOtr2p States of the breathing crack

0rOtoy1, 2p�y1rOto2p Fully open

y1rOto(p+a)/2, p�a/2rOto2p�y1 Partially open

(p+a)/2rOtr(3p�a)/2 Fully closed
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Fig. 1. States of the breathing crack and centroid locations of the cracked element cross-section for different angles of rotation.
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where m=h/R is the non-dimensional crack depth, h is the crack depth in the radial direction and g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð2�mÞ

p
. The crack

states for a full rotation angle (2p) are shown in Table 1. The crack starts to close at Ot=y1 at which the upper end of the
crack edge reaches the compression stress field as shown in Fig. 1b. The crack becomes fully closed at Ot=y2 as shown in
Fig. 1f where y1and y2 are given as

y1 ¼ tan�1 eþRð1�mÞ
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð2�mÞ

p
 !

, y2 ¼
p
2
þcos�1ð1�mÞ (2)
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The cross-sectional area of the cracked element is equal to A1 for 2p�y1rOtry1. As the crack starts to close at Ot=y1 the
area of the closed portion of the crack is denoted by A2(t) which is a time-varying quantity. The overall cross-sectional area
of the cracked element during rotation is then denoted by Ace(t)=A1+A2(t). The area moments of inertia of A1 about the
fixed X and Y axes for t=0 or about the rotated x and y axes for tZ0 are denoted by I1and I2, respectively. They are constant
quantities that are calculated as

I1 ¼ I�Ic
x (3a)

I2 ¼ I�Ic
y (3b)

where I=pR4/4 is the area moment of inertia of the shaft cross-section for the fully closed crack, R is the shaft radius, Ic
x and

Ic
y are the area moments of inertia of the crack segment shown in Fig. 2 about the rotated x and y axes or the fixed X and Y

axes, respectively. Ic
x and Ic

y are given as

Ic
x ¼

pR4

8
�

R4

4
ðð1�mÞð2m2�4mþ1Þgþsin�1

ð1�mÞÞ (4a)

Ic
y ¼

R4

12
ðð1�mÞð2m2�4m�3Þgþ3sin�1

ðgÞÞ (4b)

Here, we compare the above formulas of Ic
x and Ic

y with those found in Refs. [8–11] for a similar crack segment according the
axes arrangement in Fig. 2 which are rewritten as

~Ix ¼
pR4

4
þR4 2

3
ð1�mÞg3þ

1

4
ð1�mÞð1�4mþ2m2Þgþsin�1

ðgÞ
� �

(5a)

~Iy ¼
R4

4
ð1�mÞð1�4mþ2m2Þgþ

~a
2

� �
(5b)

where ~a ¼ 2cos�1ð1�mÞ. In Table 2 we compare the results of the moments of inertia in Eq. (4), which are derived in this
study, with ~Ix and ~Iy found in Refs. [8–11].

For m=1, the area moment of inertia about the X-axis should equal to that about the Y-axis as shown in Fig.3a since both
of the cracked and the uncracked segments are semicircles which is not true for ~Ix as shown in Table 2 and Fig. 3b. It is
shown here that both ~Ix and ~Iy in Eq. (5) are inaccurate in calculating the area moments of inertia of a crack segment while
the formulas for Ic

x and Ic
y in Eq. (4) derived in this study yield the accurate results.
Table 2
Area moments of inertia for m=0 and 1.

Crack depth Ic
x Ic

y
~I x

~Iy

m=0 0 0 pR4/4 or I? 0

m=1 pR4/8 pR4/8 3pR4/4 or 3I? pR4/8

Fig. 3. (a) Area moments of inertia in (m4) of the crack segment in the present study vs m and (b) comparison between the area moments of inertia in the

present study with the formulas found in Refs. [8–11].
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The area moments of inertia of A1 about the centroidal X and Y axes at t=0 or about the centroidal rotated x and y axes
for tZ0 are given as

I1 ¼ I1�A1e2, I2 ¼ I2 (6)

The area moments of inertia of A1 about the X and Y axes are time-varying quantities as the shaft rotates. They are
calculated as [7]

IA1

X ðtÞ ¼
I1þ I2

2
þ

I1�I2

2
cosð2OtÞ�I12sinð2OtÞ (7a)

IA1

Y ðtÞ ¼
I1þ I2

2
�

I1�I2

2
cosð2OtÞþ I12sinð2OtÞ (7b)

where O is the rotational speed of the shaft. Since y is the axis of symmetry of the cracked element cross-section during
rotation, then I12=0. The area moments of inertia of the area A2(t) about the X and Y axes which start to appear as the crack
starts to close are denoted by IA2

X ðtÞ and IA2

Y ðtÞ. For each time step, after the crack starts to close, the new values of the area
Ace(t) and its area moments of inertia IX(t) and IY(t) are calculated and the centroid location of Ace(t) is updated.

The orbits of the centroid of the overall cross-sectional area Ace(t) of the cracked element are plotted in Fig. 4a for
different values of m. In addition, Ace(t) is plotted in Fig. 4b for different values of m.

The area moments of inertia of Ace(t) about the X and Y axes are calculated as

IXðtÞ ¼ IA1

X ðtÞþ IA2

X ðtÞ (8a)

IY ðtÞ ¼ IA1

Y ðtÞþ IA2

Y ðtÞ (8b)

Hence, the area moments of inertia of Ace(t) about the centroidal X and Y axes that stay parallel to the fixed X and Y axes
during rotation are given as

IXðtÞ ¼ IXðtÞ�YceðtÞ
2AceðtÞ (9a)

IY ðtÞ ¼ IY ðtÞ�XceðtÞ
2AceðtÞ (9b)

where Xce(t) and Yce(t) are the centroid coordinates of Ace(t) relative to the fixed X and Y axes. The results of Eq. (9) are
plotted in Fig. 5a for I

X
ðtÞ and in Fig. 5b for I

Y
ðtÞ for different values of m. It is clear that the plot of I

X
ðtÞ is not similar to that

of IY ðtÞ. Hence, each of these area moments of inertia follows a different breathing function during rotation.
Fig. 6 shows that I

X
ðtÞþ I

Y
ðtÞ has nearly the same behavior of Ace(t) due to the crack breathing mechanism while neither

IX nor IY have similar behavior as shown before in Fig. 5.
An accurate functional relationship for I

X
ðtÞ is given as

IXffi ÎXðtÞ ¼ I�ðI�I1Þf1ðtÞ (10a)

f1ðtÞ ¼ cos
1

2
Ot

� �� �m

¼
1

2m

m

m=2

 !
þ2

Xm=2ð Þ�1

j ¼ 0

m

j

 !
cos ðm�2jÞ

O
2

t

� �0
@

1
A (10b)

where I is the area moment of inertia when the crack is fully closed, I1 is given in Eq. (6) and m is a positive even number.
Fig. 7 shows the high accuracy of the new formula of ÎXðtÞ given in Eq. (10) to approximate IXðtÞ.

To derive a formula for IY ðtÞ, it is simpler to introduce a formula for IXðtÞþ IY ðtÞ than finding the Fourier series expansion
of IY ðtÞ itself since the formula for approximating IXðtÞ is already introduced here. The Fourier series expansion gives an
Fig. 4. (a) The orbits of the centroid of the overall cross-sectional area Ace(t) of the cracked element, (b) the overall cross-sectional area Ace(t) of the

cracked element. The shaft radius is R=7.94 mm.



Fig. 6. (a) The sum of the area moments of inertia I
X
ðtÞþ I

Y
ðtÞ of the cracked element cross-sectional area and (b) the cross-sectional area of the cracked

element Ace(t). R=7.94 mm.

Fig. 5. Area moments of inertia of the cracked element cross-sectional area Ace(t) about the: (a) X-axis and (b) Y-axis.

Fig. 7. Area moments of inertia about the X-axis of the cracked element cross-sectional area. The solid lines represent I
X
ðtÞ and the dashed lines represent

Î
X
ðtÞ: (a) m=0.25, (b) m=0.5, and (c) m=0.75.
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approximate formula for IXðtÞþ IY ðtÞ as

IXðtÞþ IY ðtÞffi ÎXðtÞþ ÎY ðtÞ ¼ 2I�ð2I�I1�I2Þf2ðtÞ (11a)

f2ðtÞ ¼
1

p
�
y1þy2

2
þ

2

ðy2�y1Þ

Xp

i ¼ 1

cosðiy2Þ�cosðiy1Þ

i2
cosðiOtÞ

 !
(11b)
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Hence

IY ðtÞffi ÎY ðtÞ ¼ IþðI�I1Þf1ðtÞ�ð2I�I1�I2Þf2ðtÞ (12)

Fig. 8 shows plots of the exact and approximate I
Y
ðtÞ andI

X
ðtÞþ I

Y
ðtÞ using the formulas for Î

Y
ðtÞ and Î

X
ðtÞþ Î

Y
ðtÞ in

Eqs. (11) and (12) for i=4, m=8 and m=0.3.
The approximate formulas for the area moments of inertia in Eqs. (10a) and (12) are rewritten as

ÎXðtÞ ¼ I�f1ðtÞI11 (13a)

Î
Y
ðtÞ ¼ Iþ f1ðtÞI11þ I22f2ðtÞ (13b)

where I11 ¼ I�I1, I22 ¼�ð2I�I1�I2Þ. Hence, the finite element stiffness matrix of the cracked element of the cracked rotor
system is written as

kj
ce ¼

E

l3

12ÎX 0 0 6lÎX �12lÎX 0 0 6lÎX

0 12Î
Y
�6lÎ

Y
0 0 �12Î

Y
�6lÎ

Y
0

0 �6lÎY 4l2 ÎY 0 0 6lÎY 2l2 ÎY 0

6lÎX 0 0 4l2 ÎX �6lÎX 0 0 2l2 ÎX

�12lÎX 0 0 �6lÎX 12ÎX 0 0 �6lÎX

0 �12ÎY 6lÎY 0 0 12ÎY 6lÎY 0

0 �6lÎY 2l2 ÎY 0 0 6lÎY 4l2 ÎY 0

6lÎX 0 0 2l2 ÎX �6lÎX 0 0 4l2 ÎX

2
666666666666666664

3
777777777777777775

(14)

Eq. (14) can be rewritten as

kj
ce ¼ kj

þkj
1f1ðtÞþkj

2f2ðtÞ (15)

where kj is the stiffness matrix of cracked element j for fully closed crack state which is equivalent to the uncracked
element stiffness matrix in Refs. [25,26]. The matrices kj

1 and kj
2 are the secondary stiffness matrices that appear due to the

breathing crack. They are found via Eqs. (13) and (14) as

kj
1 ¼

E

l3

�12I11 0 0 �6lI11 12lI11 0 0 �6lI11

0 12I11 �6lI11 0 0 �12I11 �6lI11 0

0 �6lI11 4l2I11 0 0 6lI11 2l2I11 0

�6lI11 0 0 �4l2I11 6lI11 0 0 �2l2I11

12lI11 0 0 6lI11 �12I11 0 0 6lI11

0 �12I11 6lI11 0 0 12I11 6lI11 0

0 �6lI11 2l2I11 0 0 6lI11 4l2I11 0

�6lI11 0 0 �2l2I11 6lI11 0 0 �4l2I11

2
666666666666664

3
777777777777775

(16a)
Fig. 8. (a) The exact and approximate I
X
ðtÞþ I

Y
ðtÞ using Î

X
ðtÞþ Î

Y
ðtÞ and (b) the exact and approximate I

Y
ðtÞ using Î

Y
ðtÞ, p=4, m=8, m=0.3 and R=7.94 mm.
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kj
2 ¼

E

l3

0 0 0 0 0 0 0 0

0 12I22 �6lI22 0 0 �12I22 �6lI22 0

0 �6lI22 4l2I22 0 0 6lI22 2l2I22 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 �12I22 6lI22 0 0 12I22 6lI22 0

0 �6lI22 2l2I22 0 0 6lI22 4l2I22 0

0 0 0 0 0 0 0 0

2
66666666666664

3
77777777777775

(16b)

The FEM equations of motion of the cracked rotor-bearing-system with breathing crack model are written in matrix
form as

M €qðtÞþ Ĉ _qðtÞþðKþK1f1ðtÞþK2f2ðtÞÞqðtÞ ¼ F1 cosOtþF2 sinOtþFg (17)

where qðtÞ ¼ ½qT
1. . .q

T
2. . .q

T
i . . .q

T
Nþ1�

T is the 4(N+1)�1 dimension nodal displacement vector, qT
i ðtÞ ¼ ½ui vi fx

i fy
i � is the

single node displacement vector consisting of translational and rotational displacements about the X and Y axes for
i=1,2, y, N+1, M is the global mass matrix, K is the global stiffness matrix of the uncracked system, K1 and K2 are the
secondary stiffness matrices of zero entries except for the cracked element where the entries equal to kj

1 in K1 and equal to
kj

2 in K2, Ĉ¼GþC is the global gyroscopic and damping matrix, F1 and F2 are 4(N+1)�1 unbalance force amplitudes [12]
and Fg is 4(N+1)�1 gravity force vector. The single element mass, stiffness and gyroscopic matrices are found in
Refs. [25,26]. The matrices M, K, K1, K2 and Ĉ are each of dimension 4(N+1)�4(N+1). The functions f1(t) and f2(t) in
Eqs. (10)–(12) and (17) can be expressed as

f1ðtÞ ¼ aoþ
Xm

j ¼ 1

aj cosðjOtÞ, f2ðtÞ ¼ boþ
Xp

j ¼ 1

bj cosðjOtÞ (18)

where p=2n and n is the number of harmonics used in the finite Fourier series solution

qðtÞ ¼A0þ
Xn

k ¼ 1

ðAk cosðkOtÞþBk sinðkOtÞÞ (19)

Inserting this solution in Eq. (17) yields
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Fig. 9. The area moments of inertia (a) about X-axis and (b) about Y-axis of the cracked element cross-sectional area. The crack is assumed to be fully

open at t=0. R=7.94 mm.
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where ~C ¼KþaoK1þboK2, CðiÞ ¼ ~K�ððiþ1ÞO=2Þ2Mþð1=2Þðaiþ1K1þbiþ1K2Þ for odd values of i (i=1,3,5, y, 2n�1),
CðiÞ ¼ ~K�ðiO=2Þ2M�ð1=2ÞðaiK1þbiK2Þ for even values of i (i=2,4,6, y, 2n), CðiÞ1 ¼ iOĈ for (i=1,2, y, n), CðiÞ2 ¼ aiK1þbiK2 for
(i=1,2, y, n) and Cðk,iÞ

3 ¼ ð1=2Þððaiþkþ1þaiÞK1þðbiþkþ1þbiÞK2Þ for odd values of k (k=1,3,5, y, 2n�3),
Cðk,iÞ

3 ¼ ð1=2Þððai�aiþkÞK1þðbi�biþkÞK2Þ for even values of k (k=2,4,6, y, 2n�2) and O is of 4(N+1)�4(N+1) dimension
matrix of zero entries.

3. Comparison with previous model for breathing mechanism

The classical form of the breathing crack function proposed in Ref. [13] and used in Refs. [8–12,23] to describe the
breathing mechanism of the crack in a cracked rotor system is given by

f ðtÞ ¼
1

2
ð17cosðOtÞÞ (21)

The plus sign of the cosine term in this function is used when the crack is fully open and symmetric with the negative
Y-axis at t=0 while the negative sign is used when the crack is fully closed and symmetric with the positive Y-axis at t=0.
The sign change of the cosine term only rotates the whirl orbit by 1801 without affecting its shape. This function can be
used in Eqs. (10a) and (12) by assuming f1(t)= f2(t)= f(t) which yields

IXffi ÎXðtÞ ¼ I�ðI�I1Þf ðtÞ (22a)

IXffi ÎXðtÞ ¼ I�ðI�I2Þf ðtÞ (22b)

Eqs. (22a) and (22b) are exactly the same as the equations derived for the area moments of inertia for the cracked element
of a similar cracked rotor system with a breathing crack in Ref. [12]. Hence, using the old breathing function in the
literature given in Eq. (21) for approximating the breathing mechanism of a cracked rotor is a special case of our approach
of using the more accurate breathing functions that given in Eq. (10). Fig. 9 shows the exact plots of IXðtÞ and IY ðtÞ and the
plots of their approximate formulas using the old breathing function in Eq. (21). The figure shows the significant difference
between the exact and the approximated formulas of these area moments of inertia. In the following section the results of
using the old breathing function f(t) and the new breathing functions f1(t) and f2(t) introduced here are compared for
accuracy and validity for the rotor system with a breathing crack.

4. Theoretical results and analysis

The same finite element model used in Ref. [12] is used here as shown in Figs. 10 and 11. The undamped rotor-bearing-
disk system is divided into 18 elements where the unbalance mass me is attached either to the right or left disk as shown in
Fig. 11 at distance d from the shaft centerline. The values of the physical parameters are given in Table 3.

It is found that 4–6 harmonics are sufficient for the HB solution and give nearly the same shapes of orbits for a wide
range of the rotor speeds in the neighborhood of the critical and subcritical speeds. In Fig. 12 the old breathing in Eq. (21) is
compared with the new breathing functions proposed in this paper. It is shown that the old breathing function is not
accurate in predicting the orbit shapes in the neighborhood of the subcritical speeds.

The results in Figs. 13 and14 were generated using 4 harmonics in the HB solution for med=1�10�6 kg m. The waterfall
plot in Fig. 13a shows the shift in the first pair of critical speeds versusmwhile the waterfall plot in Fig. 14a show the shift in
the first pair of the subcritical speeds (�1/2 of the first pair of the forward and backward whirling speeds). Each critical
and subcritical speed is normalized to its corresponding value at m-0 for finding the percent shift in Figs. 13b and b as the
x

y y

1 2 ... N−1 zN3

Fig. 10. Finite element model of the rotor.

unbalance mass (me)

crack location
1 2 17 183 ...

Fig. 11. Finite element model of rotor-disk-bearing system. There are 18 elements and the crack location is at element 6.



Table 3
Physical parameters of the MFS-RDS rotordynamic simulator.

Description Value Description Value

Length of the rotor, L 0.724 m Disk outer radius, Ro 0.0762 m

Radius of the rotor, R 1.588 mm Disk inner radius, Ri 15.88 mm

Density of rotor, r 7800 kg/m3 Density of disk, r 2700 kg/m3

Modulus of elasticity, E 2.1�1011 N/m2 Mass of the disk, md 0.571 kg

Bearing stiffness, (kxx, kyy) 7�107 N/m Mass unbalance, med 10�6 kg m

Bearing damping, (cxx, cyy) 5�102 N.s/m Mass unbalance angle, b 0 rad

Fig. 12. Whirl orbits of node 1 of the cracked rotor system for different rotor speeds in the neighborhood of the first pair of the subcritical whirl speeds.

med=4.5�10�4 kg m, m=0.3.

Fig. 13. (a) Waterfall plot showing the shift in the first critical forward and backward whirl speeds and (b) % shift in these critical whirl speeds versus m.

The amplitudes are calculated at node 10.
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crack depth increases. The new peaks that start to appear at the critical and subcritical speeds can be tracked for the
cracked system to detect the crack and its size. As the crack depth increases the shift in the critical and subcritical speeds
increases which can give an approximation to the crack extent.

The peaks of the critical and subcritical speeds are plotted in Fig. 15. It is clear that while the cracked rotor passing
through 1/2, 1/3 and 1/4 of the first pair of critical speeds, significant amplitudes of vibration appear for small crack depths.
In addition, the subcritical speed that equivalent to nearly one third of the second critical forward whirl speed emerges
peaks of vibration for small crack depth. These peaks, when tracked properly in real rotors, may give an early indication of
crack propagation.

For med=3�10�4 kg m and m=0.3 the first subcritical forward whirl occurs at rotor speed O=1456 rpm while the first
subcritical backward whirl occurs at rotor speed O=1495.5 rpm. The orbits of the cracked rotor during the passage through
these subcritical speeds are plotted in Fig. 16a–d for node 10 where the highest vibration amplitudes are expected to
appear. The unbalance force is selected to maintain all vertical vibration amplitudes in this figure within the static
deflection range of the cracked rotor. Similar to the observations in Ref. [20], the change in the stiffness is continues in the
rotating-coordinate system which tends to generate higher frequency components in the response (i.e. 2�, 3�, y

frequency components). The effect of the variation of the stiffness in the rotating-coordinate system appears clearly in
Fig. 16. The whirl orbit plots before and after the subcritical forward whirl in Fig. 16a and b, respectively, agree with the



Fig. 14. (a) Waterfall plot showing the shift in the first subcritical forward and backward whirl speeds and (b) % shift in these subcritical whirl speeds

versus m. The amplitudes are calculated at node 10.

Fig. 15. Peaks of critical and subcritical speeds of the cracked rotor system for different values of m: (a) m=0.1, (b) m=0.2, (c) m=0.3. Amplitudes are

calculated for node 10, med=1�10�6 kg m.
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results in Refs. [15,18–21]. Similarly, the orbits of the cracked rotor during the passage through subcritical backward whirl
are plotted in Fig. 16c and d, respectively, which agree with the results in Ref. [15]. Specifically, an excellent agreement is
noticed about the whirl orbits during the passage through 1/2 and 1/3 of the critical speed between the results in Fig. 16
and the results in Ref. [20] where a cracked Jeffcott rotor with breathing crack was used. The orbit with one inner loop
which is dominated by the 2� frequency component in Fig. 16a changes its direction by nearly 3p/4 rad during the
passage through 1/2 of the critical back whirl as shown in Fig. 16b. The similar theoretical orbit in Ref. [20] changes its
direction by nearly pred and the similar experimental whirl orbit changes its direction by nearly p/2rad during the passage
through 1/2 of the critical back whirl. The whirl orbit with two inner loops which is dominated by the 3� frequency



Fig. 16. Whirl orbits of node 10 of the cracked rotor system, (a)–(d) passage through 1/2 of the first pair of critical whirl speed, (e)–(h) passage through

1/3 of the first pair of critical whirl speeds, (i)–(l) passage through 1/4 of the first pair of critical whirl speeds med=3�10�4 kg m, m=0.3.

Table 4
Shapes of whirl orbits during the passage through subcritical speeds.

Subcritical speed Orbit shape Response is dominated by

Passage through subcritical
forward whirl

Passage through subcritical
backward whirl

1/2 first critical backward and

forward whirl speeds

Orbit with one inner loop

Fig. 16 (a and b)

Orbit with three outer loops

Fig. 16 (c and d)

2� harmonic component

1/3 first critical backward and

forward whirl speeds

Orbit with two inner loops

Fig. 16 (e and f)

Orbit with four outer loops

Fig. 16 (g and h)

3� harmonic component

1/4 first critical backward and

forward whirl speeds

Orbit with three inner loops

Fig. 16 (i and j)

Orbit with five outer loops

Fig. 16 (k and l)

4� harmonic component
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component in Fig. 16e changes its direction by nearly p/2 rad during the passage through 1/3 of the critical forward whirl
which agrees with the experimental observations about this whirl orbit in Ref. [20]. It is interesting that the behavior of the
whirl orbits during the passage through the subcritical forward whirl is different from that at the subcritical backward
whirl as shown in Fig. 16 and Table 4. The outer loops appear during the passage through the subcritical backward whirl
while the inner loops appear during the passage through the subcritical forward whirl. Hence, we could distinguish
between the subcritical backward whirl and forward whirl orbits through these inner and outer loops.
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The difference between the whirl orbits during the passage through the subcritical backward whirl and the subcritical
forward whirl speeds is the orientation and the number of the extra loops that appear in the orbit. This phenomenon can be
utilized for crack detection in the cracked rotor.

The effect of unbalance phase angle b with the crack direction at t=0 is shown in Fig. 17 for O=1460 rpm. For unbalance
angle b=0 the crack opening is in the same direction of the unbalance mass location while for unbalance angle b=p the
crack opening is in the opposite direction of the unbalance mass location at t=0. The figure shows the sensitivity of the size
and orientation of the orbit inner loop to the unbalance force location. This behavior, which agrees with the results in
Ref. [21] for the cracked rotor, can be utilized as a way of crack detection.

The crack location is found affecting the whirl orbit only if it is close to the end of the shaft or to the bearings as shown
in Fig. 18. The inner loop reverses its direction by nearly prad when the crack occurs in element 18 which is close to the
right bearing. In addition, the size of the inner loop is found to be much smaller than its size when the crack occurs away
from the rotor ends. Hence, as the crack occurs away from the rotor center (i.e. close to the rotor ends) the behavior of the
whirl orbit is different.

5. Experimental results

The similarity between the theoretical whirl orbits in the neighborhood of the subcritical whirl speeds in this study has
an excellent agreement with those experimental orbits in Ref. [20]. However, the Spectra-Quest MFS-RDS rotordynamic
simulator, shown in Fig. 19, was used here for finding the experimental whirl orbits for node 2 of the finite element model
of the rotor system in the neighborhood of 1/2 of the first pair of the critical speeds. The physical parameters of the
Fig. 17. Whirl orbits of node 1 of the cracked rotor system for different unbalance angles with positive X-axis: med=4.5�10�4 kg m, m=0.3 and

O=1460 rpm.

Fig. 18. Whirl orbits of node 1 of the cracked rotor system for different cracked element locations: m=0.5, med=3�10�4 kg m, and O=1460.

Fig. 19. MFS-RDS rotordynamic simulator used for experimental analysis.



Fig. 20. Comparison of the theoretical and experimental orbits of the cracked rotor with breathing crack for m=0.46, med=6.3�10�4 kg m, (a)–(c)

theoretical orbits, (d)–(f) experimental orbits.
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MFS-RDS rotordynamic simulator have been previously given in Table 3. Two proximity probes have been installed close to
node 2 for the horizontal and vertical displacements. The shaft has a built in breathing crack located in element 6 with
m=0.46. The experimental whirl orbits were found to be close to the theoretical orbits for some selected rotor speeds in the
neighborhood of 1/2 of the critical rotational speed as shown in Fig. 20. The theoretical whirl orbit at O=1475 rpm in
Fig. 20b is very close in shape and direction to the experimental whirl orbit in Fig. 20e for O=1462 rpm.

6. Conclusions

An efficient model for the correct breathing mechanism of the transverse breathing crack in a cracked rotor system is
introduced in this study. The correct time-varying stiffness matrix of the cracked rotor depends on the time-varying area
moments of inertia of the cracked element. Hence, two new breathing functions are introduced here and used in
formulating the correct time-varying stiffness matrix of the cracked element. These new functions are considerably more
accurate than the previously used one in Refs. [8–12,13]. The FEM equations of motion are then formulated and the time-
varying stiffness matrix of the cracked element is incorporated into the global stiffness matrix of the system in the finite
element model. The finite element model of the system was solved via the harmonic balance method for response, orbits,
and critical and subcritical rotational speeds. In addition, the efficiency of this approach is shown by comparison with some
recent published results in Refs. [15,18–21].

The efficient model of the breathing crack and the harmonic balance solution in this study for the cracked rotor system
have resulted in significant observations. The exact critical and subcritical speeds and their shift due to the increase in the
crack depth have been obtained from the waterfall plots. The shift in both critical and subcritical speeds may give an
approximation to the crack depth. In addition, the well-known orbit with two loops is shown to appear during the passage
through the first subcritical forward whirl while this was verified in the previous studies. The orbit with three outer loops
appears during the passage through the first subcritical backward whirl. These orbits which appear within the static
deflection range for relatively high unbalance force can be used for detecting the breathing crack at small crack depths.
Hence, the appearance of the inner loops of the orbits during the passage through the subcritical forward whirl and of the
outer loops during the passage through the subcritical backward whirl is a significant phenomenon for crack detection.
These orbits are sensitive to the unbalance force direction which may also help in detecting the crack at the beginning of its
growth. The crack location only affects the orbits in the neighborhood of the subcritical speeds when this location is very
close to the bearings. The vibration amplitudes at the first and second pairs of the subcritical whirl speeds were found to be
significant for crack detection even for small crack depths. In addition, our theoretical and experimental findings
demonstrate good agreement while they also match well with well-known theoretical and experimental results in the
literature.
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Based on the approach of this study, different techniques can be utilized for detecting the crack in the rotor system at
the same time. These include knowledge of the exact critical and subcritical whirl speeds, the shift in these critical and
subcritical whirl speeds, whirl orbits with inner or outer loops in the neighborhood of the subcritical whirl speeds, the
sensitivity of these whirl orbits to the location of unbalance force, and the significant vibration amplitudes at these
subcritical speeds.
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Appendix A. Calculation of the area, centroid and the area moments of inertia of the cracked and the uncracked segments
of the cracked element cross-section

The cracked element cross-section is shown in Fig. A1a where Ac represents the area of the crack segment and A1

represents the left uncracked area. The quantities b and s in Fig. A1b can be rewritten in term of the crack depth ratio m=h/R
as b=R(1�m) and s=Rg where g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð2�mÞ

p
. The area Ac of the crack segment is calculated as

Ac ¼

Z
Ac

dAx ¼ 2

Z s
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ðy�bÞdx¼ 2

Z s

0
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�x2

p
�bÞdx

¼ R2 sin�1 s

R

� �
þs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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¼ R2 sin�1g�R2ð1�mÞg (A1)

For a/2=sin�1g=cos�1(1�m) Eq. (A1) becomes

Ac ¼ R2cos�1ð1�mÞ�R2ð1�mÞg (A2)

Hence

A1 ¼ pR2�Ac ¼ R2ðp�cos�1ð1�mÞþð1�mÞgÞ (A3)

The centroid location of the area A1 on the Y-axis is calculated by integrating over the area as
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The area moments of inertia of the crack segment about the fixed X and Y axes or the rotating x and y axes are derived,
respectively, as

Ic
X ¼ Ic
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Fig. A1. (a) and (b) schematic diagrams of the cracked element cross-section.



M.A. Al-Shudeifat, E.A. Butcher / Journal of Sound and Vibration 330 (2011) 526–544542
¼
pR4

8
�

1

4
R4 sin�1

ð1�mÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�b2

p
ðbR2�2b3Þ

� �
¼
pR4

8
�

R4

4
ðð1�mÞð2m2�4mþ1Þgþsin�1

ð1�mÞÞ (A5)

Ic
Y ¼ Ic

y ¼

Z
Ac

x2 dAx ¼ 2

Z s

0
x2ðy�bÞdx¼ 2

Z s

0
x2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�x2

p
�bÞdx

¼
1

12
3R4 sin�1 s

R

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�s2

p
ð3sR2�6s3Þ�8bs3

� �
¼

R4

12
ðð1�mÞð2m2�4m�3Þgþ3sin�1

ðgÞÞ (A6)

Appendix B. Calculations of the area, centroid and the area moments of inertia of the cracked element cross-section

The closed portion of the crack is represented by the thick boundary in Fig. B1 where the area of this closed portion is
A2=A3+A4. As the upper corner of the crack reaches the compression stress field at y=y1 the further increase in y (y4y1)
makes the crack start to close forming the closed portion of area A2 in which the areas A3 and A4 are formed. The initial
guess for the new centroid location at the new angle y4y1 is Y ð1Þce ¼ ecosðy1Þ where the angles in Fig. B1 are calculated as

d¼ sin�1 Yce

R

� �
, b¼ yþ

a
2
�d�

p
2

� �
, f¼

p
2
�ðbþdÞ, j¼ p

2
�
a
2

, r¼f�j (B1)

The integration limits for calculating the areas, area moments of inertia and the centroids are given as

a1 ¼ RcosðbþdÞ, a2 ¼ RcosðdÞ, b1 ¼ Yce

b2 ¼ RsinðbþdÞ, ao ¼ a1�ðb2�b1ÞtanðrÞ (B2)

The area A3 and its centroidal coordinates relative to the fixed X and Y axes are calculated as

A3 ¼
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Fig. B1. Schematic diagram showing all necessary angles and quantities for calculating area, centroid and the area moments of inertia of the closed

portion of the breathing crack.
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Similarly, the area A4 and its centroidal coordinates relative to the fixed X and Y axes are calculated as

A4 ¼
1

2
ðb2�b1Þða1�aoÞ (B4a)

X4 ¼ aoþ
ða1�aoÞ

3
(B4b)

Y4 ¼ b1þ
ðb2�b1Þ

3
(B4c)

The cracked element cross-sectional area is Ace=A1+A3+A4. The centroid coordinates of Ace are calculated relative to the
fixed X and Y axes as

Xce ¼
A1X1þA3X3þA4X4

Ace

Yce ¼
A1Y1þA3Y3þA4Y4

Ace
(B5)

where X1=�e cos y and Y1=e sin y are the centroid coordinates of A1 in the fixed X and Y axes.

An iterative procedure on Yce is repeated as Y ðkþ1Þ
ce ¼ ðY ðkÞce þY ðk�1Þ

ce Þ=2 and Eqs. (B1)–(B5) are recalculated for each

iteration step until ðY ðkþ1Þ
ce �Y ðkÞce Þ-0ðminimumÞwhere the exact centroid coordinates of the cracked element cross-sectional

area are located. Once the exact location of the centroid is located, the integration limits a1, a2, b1 and b2 are recalculated
where the area moments of inertia for A3 and A4 about the fixed X and Y axes are calculated as
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The area moments of inertia of A1 in Appendix A and of A3 and A4 are calculated about the fixed X and Y axes. Hence,
the overall area moments of inertia of the cracked element cross-sectional area Ace at y4y1are calculated as

IAce

X ¼ IX ¼ IA1

X þ IA3

X þ IA4

X

IAce

Y ¼ IY ¼ IA1

Y þ IA3

Y þ IA4

Y (B8)

These area moments of inertia are recalculated about the centroid of Ace (Xce, Yce) as

IX ¼ IX�AceðYceÞ
2

IY ¼ IY�AceðXceÞ
2 (B9)

For each new angle of rotation all steps in Eqs. (B1)–(B9) are repeated until the crack becomes fully closed.
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